Joint CQSE and CASTS Seminar

Weekly Seminar
Mar. 31, 2017 (Friday)

TIME Mar. 31, 2017, 14:30~15:30
TITLE Two-dimensional melting: New algorithms, new insights
SPEAKER Prof. Werner Krauth
Statistical Physics Laboratory, Department of Physics, Ecole normale supérieure, Paris, France
PLACE Rm716, CCMS \& New Physics Building, NTU

Abstract

The hard-disk model has exerted outstanding influence on computational physics and statistical mechanics. Decades ago, hard disks were the first system to be studied by Markov-chain Monte Carlo methods (1) and by molecular dynamics (2). It was in hard disks, through numerical simulations, that a two-dimensional melting transition was first seen to occur (3) even though such systems cannot develop long-range crystalline order. This provided the starting point for the Kosterlitz-Thouless theory (4). Analysis of the system was made difficult by the absence of adequate simulation methods. In recent years, we developed the powerful event-chain algorithm (5) which allowed us to prove (6) that hard disks melt with a first-order transition from the liquid to the hexatic and a continuous transition from the hexatic to the solid. We thus confirm the existence of a hexatic phase yet show that the classic KTHNY theory does not apply. Subsequent work for soft-sphere potentials yields a generic theory of two-dimensional melting (7).

The event-chain algorithm is a first example of a class of "Beyond-Metropolis" (8) methods that violate detailed balance, yet satisfy global balance (the Markov chains are irreversible). Equilibrium is reached as a steady state with non-vanishing probability flows. The widely used filter. The system energy is not computed, providing a fresh perspective for long-range interactions (9). Moves are infinitesimal and persistent, implementing the lifting concept (10). The resulting general class of fast algorithms overcomes the Markov-chain Monte Carlo algorithm's limitations of the detailed-balance condition and goes beyond hybrid Monte Carlo.

[^0](5) E. P. Bernard, W. Krauth, D. B. Wilson, Phys.Rev. E 80056704 (2009).
(6) E. P. Bernard, W. Krauth, Phys. Rev. Lett. 107, 155704 (2011).
(7) S. C. Kapfer, W. Krauth, Phys. Rev. Lett. 114, 035702 (2015).
(8) M. Michel, S. C. Kapfer, W. Krauth, J. Chem. Phys. 14054116 (2014).
(9) S. C. Kapfer, W. Krauth, Phys. Rev. E 94, 031302 (2016).
(10) S. Diaconis, S. Holmes, R. Neal, Ann. Appl. Probab., 10, 726 (2000).

[^0]: (1) N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, J. Chem. Phys. 211087 (1953).
 (2) B. J. Alder and T. E. Wainwright, J. Chern. Phys. 27, 1208 (1957).
 (3) B. J. Alder and T. E.Wainwright, Phys. Rev. 127, 359 (1962).
 (4) J. M. Kosterlitz and D. M. Thouless, J. Phys. C 6, 1181 (1973).

