Joint CQSE and CASTS Seminar

Weekly Seminar Jun. 1, 2012 (Friday)

TIME	Jun. 1, 14:30 ~ 15:30
TITLE	Theoretical Study of Ammonia Oxidation on RuO2(110)
	Surfaces: Mechanism and Microkinetics
SPEAKER	Prof. Jyh-Chiang Jiang
	Department of Chemical Engineering, National Taiwan
	University of Science and Technology
PLACE	Rm716, CCMS & New Physics Building, NTU

<u>Abstract</u>

Previous ammonia oxidation studies reported ca. 100% NO selectivity and the absence of N₂O on RuO₂(110) in ultrahigh vacuum (UHV) at 530 K, $p(NH_3) = 10^{-7}$ mbar, and O₂/NH₃ = 20 (Wang, Y.; Jacobi, K.; Schone, W.-D.; Ertl, G. *J. Phys. Chem. B* **2005**, *109*, 7883). Differently, the steady-state and transient experiments over polycrystalline RuO₂ at ambient pressure reveal that N₂ is the predominant product. The NO selectivity was as low as 6% at O₂/NH₃ = 2 and reached a maximum of 65% at the highest temperature (773 K) and effective oxygen-to-ammonia ratio of 140, whereas the maximum N₂O selectivity was 25% at 100% NH₃ conversion. (Perez-Ramırez, J. et al. *J. Phys. Chem. C* **2010**, *114*, 1660). Such contradiction of product distribution stimulates us to carefully examine ammonia oxidation on RuO₂(110) combined with DFT calculations and microkinetic modeling.

In my presentation, I'll demonstrate the theoretical simulations of temperature programmed desorption (TPD) spectra of ammonia on $RuO_2(110)$ surface, which is well agreeable to experimental observation by Wang et al (*J. Phys. Chem. B* **2005**, *109*, 7883). Then, I'll show the product distribution, based on our mirokinetic analysis combined with DFT calculation, at different temperature, pressure, and NH₃/O₂ ratios.

